Feature Selection in Hierarchical Feature Spaces

نویسندگان

  • Petar Ristoski
  • Heiko Paulheim
چکیده

Feature selection is an important preprocessing step in data mining, which has an impact on both the runtime and the result quality of the subsequent processing steps. While there are many cases where hierarchic relations between features exist, most existing feature selection approaches are not capable of exploiting those relations. In this paper, we introduce a method for feature selection in hierarchical feature spaces. The method first eliminates redundant features along paths in the hierarchy, and further prunes the resulting feature set based on the features’ relevance. We show that our method yields a good trade-off between feature space compression and classification accuracy, and outperforms both standard approaches as well as other approaches which also exploit hierarchies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

Soft Attribute Selection for Hierarchical Clustering in High Dimensions

In this paper we perform an hierarchical clustering in high – dimensional spaces, without first applying any space reduction. Instead, in each step of the algorithm we perform a soft feature selection, witch does not have to be shared among all input elements. The main goal is to correctly identify the patterns that underly in the data. The proposed algorithm is applied, with promising results,...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014